Deciphering the Mechanism of β-Aminobutyric Acid-Induced Resistance in Wheat to the Grain Aphid, Sitobion avenae
نویسندگان
چکیده
The non-protein amino acid β-aminobutyric acid (BABA) can induce plant resistance to a broad spectrum of biotic and abiotic stresses. However, BABA-induced plant resistance to insects is less well-studied, especially its underlying mechanism. In this research, we applied BABA to wheat seedlings and tested its effects on Sitobion avenae (F.). When applied as a soil drench, BABA significantly reduced weights of S. avenae, whereas foliar spray and seed treatment had no such effects. BABA-mediated suppression of S. avenae growth was dose dependent and lasted at least for 7 days. The aminobutyric acid concentration in phloem sap of BABA-treated plants was higher and increased with BABA concentrations applied. Moreover, after 10 days of treatment, the aminobutyric acid content in BABA-treated plants was still higher than that in control treatment. Sitobion avenae could not discriminate artificial diet containing BABA from standard diet, indicating that BABA itself is not a deterrent to this aphid. Also S. avenae did not show preference for control plants or BABA-treated plants. Consistent with choice test results, S. avenae had similar feeding activities on control and BABA-treated plants, suggesting that BABA did not induce antifeedants in wheat seedlings. In addition, aminobutyric acid concentration in S. avenae feeding on BABA-treated plants was significantly higher than those feeding on control plants. Sitobion avenae growth rate was reduced on the artificial diet containing BABA, indicating that BABA had direct toxic effects on this aphid species. These results suggest that BABA application reduced S. avenae performance on wheat seedlings and the mechanism is possibly due to direct toxicity of high BABA contents in plant phloem.
منابع مشابه
Discovery of English grain aphid (Hemiptera: Aphididae) biotypes in China.
The English grain aphid, Sitobion avenae (F.) (Hemiptera: Aphididae), is an important pest insect of wheat, Triticum aestivum (L.), in China. Grain aphid biotypes are necessary to breed aphid-resistant wheat varieties; however, none have currently been identified. Here, we describe a method to identify grain aphid biotypes and survey the aphid biotype variation in the wheat growth area of China...
متن کاملActivity of Aspartate Aminotransferase and Alanine Aminotransferase within Winter Triticale Seedlings Infested by Grain Aphid (sitobion Avenae F.)
Amino acid level is well known indicator of plant resistance to aphids. Our earlier studies showed that grain aphid (Sitobion avenae F.) infestation caused changes in the activity of the enzymes connected with amino acid biosynthesis and the transformation to defensive secondary metabolites within triticale tissues. However, there are not data on the significance of aminotransferases in these p...
متن کاملResistance of Wheat Accessions to the English Grain Aphid Sitobion avenae
The English grain aphid, Sitobion avenae, is a major pest species of wheat crops; however, certain varieties may have stronger resistance to infestation than others. Here, we investigated 3 classical resistance mechanisms (antixenosis, antibiosis, and tolerance) by 14 wheat varieties/lines to S. avenae under laboratory and field conditions. Under laboratory conditions, alatae given the choice b...
متن کاملSearching for wheat resistance to aphids and wheat bulb fly in the historical Watkins and Gediflux wheat collections
Insect pests can reduce wheat yield by direct feeding and transmission of plant viruses. Here we report results from laboratory and field phenotyping studies on a wide range of wheat, including landraces from the Watkins collection deriving from before the green revolution, more modern cultivars from the Gediflux collection (north-western Europe) and modern UK Elite varieties, for resistance to...
متن کاملUnravelling mycorrhiza-induced wheat susceptibility to the English grain aphid Sitobion avenae
Arbuscular mycorrhizal (AM) fungi are root symbionts that can increase or decrease aphid growth rates and reproduction, but the reason by which this happens is unknown. To investigate the underlying mechanisms of this interaction, we examined the effect of AM fungi on the English Grain aphid (Sitobion avenae) development, reproduction, attraction, settlement and feeding behaviour on two natural...
متن کامل